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ABSTRACT

The system R, or more precisely the pure implicational fragment R →, is considered by the 
relevance logicians as the most important. The another central system of relevance logic has 
been the logic E of entailment that was supposed to capture strict relevant implication. The 
next system of relevance logic is RM or R-mingle. The question is whether adding m i n g l e 
a x i o m  to R → yields the pure implicational fragment RM → of the system? As concerns the 
weak systems there are at least two approaches to the problem. First of all, it is possible to 
restrict a validity of some theorems. In another approach we can investigate even weaker log-
ics which have no theorems and are characterized only by rules of deducibility.

1. The System of Natural Deduction

The central point of relevant logicians has been to avoid the paradoxes 
of material and strict implication. In other words, according to them, the 
heart of logic lies in the notion “if […] then [...]”. Among the material 
paradoxes the following are known:

M1. α → (β → α) (positive paradox);
M2. ~ α → (α → β);
M3. (α → β) ∨ (β → α);
M4. (α → β) ∨ (β → γ).

In turn, among the strict paradoxes there are known the following:

S1. α → (β → β);
S2. α → (β ∨ ~ β);
S3. (α ∧ ¬ α) → β (ex falso quodlibet).
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Relevance logicians have claimed that these theses are counterintui-
tive. According to them, in each of them the antecedent seems irrelevant 
to the consequent. Generally speaking, when a formula of the form 
α → β is provable in the system it should mean that “α entails β” or “β 
is deducible from α”. In other words, it would mean semantically, as con-
cerns material implication, that there is no assignment of values to vari-
ables which makes α true and β false, and as concerns strict implication 
to mean that it is impossible that α and not-β. But material implication 
is truth functional and it seems to be not enough to determine implica-
tion in the relevant meaning.

Let us take M1 that one can find in the Tarski–Bernays axiom system. 
Following Anderson and Belnap (1975), the formula violates the princi-
ple that truths entiled by necessary truths are themselves necessary. Let 
us admit that α is contingently true and β necessarily true. So from α we 
have β → α what means that in the latter a necessity entails a contingen-
cy. In turn, if one accepts M3, one would be committed to maintain that 
for any two propositions one implies the other. As far as S3 is concerned, 
it means ex falso quodlibet, from a true contradiction any proposition 
may be deduced. 

For a moment let us drop the problem of paradoxes and fallacies of 
implication and dwell on syntactic aspects. For this purpose we use 
a natural deduction system in the form proposed by Fitch (1952) but for 
the first time it was introduced, as a method of subordinate proofs, inde-
pendly by S. Jaśkowski and G. Gentzen. Every proof within a natural de-
duction system begins with a hypothesis. Every subsequent step in the 
proof is introduced by a hypothesis or it is a formula that is derived from 
previous steps using one of the rules of the system. Every hypothesis in-
troduces a subproof of the proof. Proofs and subproofs are marked out by 
vertical lines. Besides, the rules for each connective are rules that do not 
involve them. Using one of them one can introduce a formula as a hy-
pothesis (premise). Using the other two rules it is possible to copy formu-
lae in a proof. By this means one can copy a line of a proof within the 
same proof using the rule of repetition (rep) or the rule of reiteration 
(reit) which allows to copy a line from a proof into any of its sub-
proofs. 

Let us start from the rules for the relevance logic R associated with im-
plication — the introduction rule and the elimination rule. Following 
Anderson and Belnap (1992), the elimination rule is:

(→ E) From α → β and α to infer β.
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The rule of implication introduction is:

(→ I) From a proof of β on hypothesis α to infer α → β.

We are now ready to prove M1:

1.  |  α 			    hyp;
2.  |    |  β 			    hyp;
3.  |    |  α 			    1 (reit); 
4.  |    β → α 			    2–3, → I;
5. α → (β → α) 		  1–4, → I.

But it is obvious that there is no relevance between premises and they 
are not really used in the derivation of (4) and (5). The fallacy of rele-
vance can be shown in the proof of S1:

1.  |  α 			    hyp;
2.  |    |  β 			    hyp;
3.  |    |  β 			    2 (rep); 
4.  |    β → β 			    2–3, → I;
5. α → (β → β) 		  1–4, → I.

In the above proof we have β → β from the irrelevant hypothesis α. 
Using S1 it is possible to prove from “The Earth is round” that “Marga-
ret is pregnant implies that Margaret is pregnant”.

To resolve this problem we need additional tools that eliminate such 
derivations. In the classical logic some of the premises are completely ir-
relevant with reference to the conclusion. What we need is really using 
the premises in the derivation of the conclusion. For this purpose rele-
vance logicians introduced the idea of indexing each hypothesis by 
a  numbers. In this way each step in a proof is indexed which helps to 
track which conclusions depend on which hypothesis. What is more, the 
additional proviso for the introduction rule and some changes in the 
elimination rule has been introduced. They are the following:

(→ E’) From α → βk and αl to infer βk ∪ l
(→ I’) From a proof of βk on hypothesis α{l} to infer α → βk – {l}, provided l occurs in k.

Using the above new tools one may prove the l a w  o f  a s s e r t i o n :

1.  |  α{1} 			    hyp;
2.  |    |  α → β{2} 		   hyp;
3.  |    |  α{1} 			    1 (reit); 
4.  |    |  β{1, 2} 			    2–3, → E’;
5.  |  (α → β) → β{1} 		   2–4, → I’;
6. α → [(α → β) → β] 		   1–5, → I’.
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Due to the indexing system it is possible to remove the scope lines, 
since the numbers help to distinguish between a proof and a subproof, 
and it is clear in which subroof a step is contained. Then, we do not need 
a reiteration rule and a repetition rule. Let us consider the proof of the 
l a w  o f  t r a n s i t i v i t y:

1. α → β{1} 				     hyp;
2. β → γ{2} 				     hyp;
3. α{3} 				     hyp;
4. β{1, 3} 				     1, 3, → E’;
5. γ {1, 2, 3} 				     2, 4, → E’;
6. α → γ {1, 2} 				    3–5, → I’;
7. (β → γ) → (α → γ){1} 			   2–6, → I’;
8. (α → β) → [(β → γ) → (α → γ)] 	  1–7, → I’.

The proviso included in (→ I’), that l occurs in k, ensures that prem
ises are really used in the derivation of a conclusion. But what about the 
rules for disjunction and conjunction? As far as the truth condition for 
conjunction is concerned, we have the following rules:

(∧ I) From αk and βk to infer α ∧ βk; 
(∧ E) From α ∧ βk to infer αk or βk.

In the natural deduction system the rules for an introduction disjunc-
tion are fairly standard:

(∨ I) From αk to infer α ∨ βk

and

(∨ I) From βk to infer α ∨ βk.

On the other hand, if one accepts the rule of an elimination disjunc-
tion in the following form:

(∨ E) From α ∨ βk and ¬ αk to infer βk,

it would be possible to prove unwelcomed S3:

1. α ∧ ¬ α{1} 				     hyp;
2. α{1} 				     1, ∧ E;
3. α ∨ β{1} 				     2, ∨ I;
4. ¬ α{1} 				     1, ∧ E;
5. β{1} 				     3, 4, ∨ E;
6. (α ∧ ¬ α) → β 			    1–5, → I’.
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The solution would be to introduce some changes in (∨ E). Anderson 
and Belnap appeal to a version of the disjunction elimination rule, used 
in G. Gentzen and D. Prawitz’s natural deduction systems for intui
tionistic and classical logic. In our notation the rule is:

(∨ E’) From α ∨ βk,          α → γl and β → γl to infer γk ∪ l.

But R. Brady (2003) formulated an alternative rule of disjunction 
elimination. Contrary to the Anderson and Belnap’s rule, the Brady’s one 
allows the derivation of an important principle, which is the l a w  o f 
d i s t r i b u t i o n:

(DST) α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ).

The Brady’s rule is of the form:

(∨ EB) From α ∨ βk to infer αk, βk.

In the Anderson and Belnap’s system (DST) is added as an additional 
rule but if one is endowed with the Brady’s rule one is ready to prove it:

1. α ∧ (β ∨ γ){1} 			    hyp;
2. α{1} 				     1, ∧ E;
3. β ∨ γ{1} 				     2, ∧ E;
4. β{1}, γ{1} 				     3, ∨ EB;
5. α ∧ β{1}, γ{1} 			    2, 4, ∧ I;
6. α ∧ β{1}, α ∧ γ{1} 			    2, 5, ∧ I;
7. α ∧ β ∨ α ∧ γ{1}, α ∧ γ{1} 		   6, ∨ I;
8. α ∧ β ∨ α ∧ γ{1}, α ∧ β ∨ α ∧ γ{1} 	  7, ∨ I;
9. α ∧ β ∨ α ∧ γ{1} 			    8, ! E.

In the ninth step the rule (! E) of exclamation elimination was used 
which states that it is allowed to infer from α{k}, α{k} to α{k}. Thus, from 
two lines of proof which prove the same thing we are allowed to drop 
one of them. 

2. The Deduction Theorem

The relationship between deductions and implications may be discussed 
in a semantic and a syntactic version. We are concerned with a syntac-
tic one or more precisely with proof-theoretic version. To understand 
this relationship we need to formulate a metatheorem that is used to de-
duce proofs in a given theory. The deduction theorem states that if a for-
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mula β is deducible from α, then the implication α → β is demonstrable 
or deducible from the empty set (is a theorem in a logic). Thus, for a giv-
en logic L we have:

If α v β then v α → β.

The deduction theorem may be generalized to any finite sequent: 

(DT) If α1, α2, … , αn, β v γ is a valid sequent in L, then α1, α2, … , αn v β → γ.

Of course it is possible to infer so on until we obtain:

v α1 → ( … ( αn → (β → γ)) …).

As for relevant logics what is needed in the deduction theorem is the 
relevance in the sequent. Thus, the sequent:

α1, α2, … ,αn v β,

is valid if and only if from the hypotheses α1{1}, α2{2}, … ,αn{n} one can de-
rive β{1, …, n}. For a valid sequent:

α1, α2, … ,αn, β v γ,

the inference from the assumption of α1{1}, α2{2}, …, αn{n} and β{n + 1} to 
γ{1, …, n+1} is valid as well. Using an introduction rule it is possible to in-
fer β → γ{1, …, n} from α1{1}, α2{2}, …, αn{n}, so it is obvious that the sequent 
α1, α2, …,  αn v β → γ is valid.

3. Systems of Relevance Logic

The system R, or more precisely the pure implicational fragment R →, is 
considered by the relevance logicians as the most important and delight-
ful. First of all, R → is the oldest one. It was formulated independently 
by Moh Shaw-Kwei in 1950 and A. Church in 1951. Church calls his sys-
tem the “weak positive implicational propositional calculus”. Following 
Church and Moh the axiomatic system of R → is:

R → 1 α → α (self-identity);
R → 2 (α → β) → [(γ → α) → (γ → β)] (prefixing)1 

or alternatively:

1  Another form of p r e f i x i n g  is: (β → γ) →[ (α → β) → (α → γ)].
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R → 2’ (α → β) → [(β → γ) → (α → γ)] (transitivity);
R → 3 [α → (α → β)] → (α → β) (contraction) 

or alternatively:

R → 3’ [α → (β → γ)] → [(α → β) → (α → γ)] (self-distribution);
R → 4 α → [(α → β) → β] (assertion);

or alternatively:
R → 4’ [α → (β → γ)] → [β → (α → γ)] (permutation).

Although the heart of relevance in R lies in the above implicational 
fragment, neither Moh nor Church considered the possibility of obtain-
ing R by adding axioms for truth functions to R →. Thus, the axioms for 
the additional truth functions have the following form:

R5 (α ∧ β) → α;
R6 (α ∧ β) → β;
R7 [(α → β) ∧ (α → γ)] → [α → (β ∧ γ)];
R8 α → (α ∨ β);
R9 β → (α ∨ β);
R10 [(α → γ) ∧ (β → γ)] → [(α ∨ β) → γ];
R11 [α ∧ (β ∨ γ)] → [(α ∧ β) ∨ γ)];
R12 (α → ¬ β) → (β → ¬ α);
R13 ¬ ¬ α → α.

The inference rules are:

(Adjunction) from α and β to infer α ∧ β; 
(Modus Ponens) given α → β, from α to infer β. 

The another central system of relevance logic has been the logic E of 
entailment that was supposed to capture strict relevant implication. C. I. 
Lewis added a new connective to classical logic, it means the strict impli-
cation, to create the modal systems in order to avoid the paradoxes of 
material implication. But W. Ackermann proved that Lewis’ systems do 
not properly interpret that α entails β and acceptance of (S3) is paradox-
ical as well. On the ground of Ackermans’ system Π’, Anderson and Bel-
nap formulated their logic E. From a syntactic point of view, the system 
R is axiomatic extension of E.2 The latter is a system of relevant strict im-
plication that is both a relevance logic and a modal logic with i t  i s 
n e c e s s a r y  t h a t  α defined as follows:

∼ α =def (α → α) → α.

2  Anderson and Belnap (1975: 340) proposed the axiomatisation where R is ob-
tained from E by adding the axiom α → [(α → α) → α]. This axiom is modality-destroying 
(demodalizer) with reference to the modality-preserving axioms. 
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The pure calculus of entailment E → may be axiomatised as fol-
lows:

E → 1 α → α (identity);
E → 2 (α → β) → [(β → γ) → (α → γ)] (transitivity)3;
E → 3 [α → (α → β)] → (α → β) (contraction)4;
E → 4 [α → (ϕ → ψ) → β] → [(ϕ → ψ) → (α → β)] (restricted permutation)5.

In this configuration the only difference between R → and E → in-
cludes the forth axiom but the other variants of axiomatization are pos-
sible (Dunn 1986: 117–224). This is how we can prove in R → the l a w 
o f  p e r m u t a t i o n:

1. α → (β → γ){1} 			    hyp;
2. β{2} 				     hyp;
3. α{3} 				     hyp;
4. β → γ{1, 3} 				     1, 3, → E’;
5. γ{1, 2, 3} 				     2, 4, → E’;
6. α → γ{1, 2} 				     3, 6, → I’;
7. β → (α → γ){1} 			    2–6, → I’;
8. [α → (β → γ)] → [β → (α → γ)] 	  1–7, → I’.

But the same proof of (R → 4) is impossible in E →. O n the other 
hand, a proof of the l a w  o f  r e s t r i c t e d  p e r m u t a t i o n  in E → 
looks as follows:

1. α → (ϕ → ψ) → β{1} 				    hyp;
2. ϕ → ψ{2} 					      hyp; 
3. α{3} 					      hyp;
4. (ϕ →ψ) → β{1, 3} 				     1, 3, → E’;
5. β{1, 2, 3} 					      2, 4, → E’;
6. α → β{1, 2} 					      3–5, → I’;
7. (ϕ →ψ) → (α → β){1} 			    2–6, → I’;
8. [α → (ϕ →ψ) → β] → [(ϕ →ψ) → (α → β)] 	  1–7, → I’.

Why a proof of the l a w  o f  p e r m u t a t i o n  is impossible in E →? 
The reason is we could use a (minor) premise in (→ E’) with a smaller in-
dex than a (major) premise if a former has a form of implication. In this 
way a step (4) is correct but (5) is forbidden because a minor premise β{2} 
is not an implication.6 

3 O r alternatively prefixing.
4 O r alternatively self-distribution.
5 O r alternatively restricted-assertion.
6  In terms of natural deduction with the vertical lines a formula may be reiterated if it 

is an implication.
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Let us describe the next system of relevance logic that is called RM or 
R-m i n g l e. RM is the axiomatic extension of R by the m i n g l e  a x i o m:

α → (α → α) (MA).

The question is whether adding (MA) to R → yields the pure implica-
tional fragment RM → of the system? The answer is negative — instead 
of RM → one obtains RMO →. The former system may be described by 
independent and complete set of axioms. It means that RM is not 
a  c o n s e r v a t i v e  e x t e n s i o n7 of RMO→. From the point of view 
of natural deduction adding the following mingle rule:

from αk and αl to infer αk ∪ l (MGL),

to the rules of R, leads to the system RM. But if one confines (MGL) to 
the form of implication:

from (α → β)k and (α → β)l to infer (α → β)k ∪ l (MGL*),

and adds it to the rules of E, one creates the system EM in the form of 
natural deduction.

The weakest system of entailment is the logic T i c k e t - e n t a i l -
m e n t  T. The implicational fragment T → would be axiomatised using 
s e l f-i m p l i c a t i o n, p r e f i x i n g, t r a n s i t i v y  and c o n t r a c -
t i o n  or p e r m u t e d  s e l f-d i s t r i b u t i o n.

In the system of natural deduction it is necessary to modify (→ E’) in 
the following form:

(→ E*) From α → βk and αl to infer βk ∪ l, provided max (k) ≤ max (l).

Thus, a proof of p r e f i x i n g  would look as follows:

1. α → β{1} 				     hyp;
2. γ → α{2} 				     hyp;
3. γ{3} 				     hyp;
4. α{2, 3} 				     2, 3, → E*;
5. β{1, 2, 3} 				     1, 4, → E*;
6. γ → α{2} 				     3–4, → I’;
7. γ → β{1, 2} 				     3–5, → I’;
8. (γ → α) → (γ → β){1} 			   6–7, → I’;
9. (α → β) → [(γ → α) → (γ → β)] 	  1–8, → I’.

7  A logical theory T2 is a (proof theoretic) conservative extension of a theory T1 if the 
language of T2 extends the language of T1 and every theorem of T1 is a theorem of T2 and 
any theorem of T2 which is in the language of T1 is already a theorem of T1. 
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4. Semantics for Relevance Logics

There are known four basic semantics which are used for relevance log-
ics. The best known is the Routley–Meyer semantics that is called the r e -
l a t i o n a l  s e m a n t i c s. The remaining semantics do not use rela-
tions. There is A. Urquhart’s s e m i l a t t i c e  s e m a n t i c s, K. Fine’s 
o p e r a t i o n a l  s e m a n t i c s  and J. M. Dunn’s a l g e b r a i c  s e -
m a n t i c s. We fix one’s attention on the relational semantics.

The starting point for R. Routley and B. Meyer was the possible world 
semantics for modal logic. But it was needed to modify the semantics to 
fit relevant logic. For this purpose, they introduced a t h r e e  p l a c e 
(ternary) accessibility relation instead of the binary accessibility relation. 
Thus, in modal logics we have possible worlds but with regard to rele-
vant logics we have s i t u a t i o n s.8 In contradiction to worlds, situation 
can be incomplete and inconsistent. Incompletness means that in some 
situations we does not have information whether a given proposition is 
true or false. By a p o s i t i v e  r e l a t i o n a l  f r a m e  for R+ without ne-
gation we mean a triple 〈K, R, O〉, where K is non-empty set of situations 
(Routley called the elements a, b, c etc. in K s e t - u p s), R is three-placed 
relation on K and O ∈ K is the set of l o g i c a l  s i t u a t i o n s.9 We may 
interpret Rabc as the combination of the pieces of information a and b 
which are a piece of information in c. For the framework we have the fol-
lowing requirements:

1. ROaa (identity);
2. Rabc ⇒ Rbac (commutativity);
3. R2(ab) cd ⇒ R2a(bc)d (associativity);
4. Raaa (idempotence);
5. Rabc and a’ ≤ a ⇒ Ra’bc (monotony).

By ≤ we mean the h e r e d i t a r i n e s s  r e l a t i o n. This a binary re-
lation on situation and a ≤ b means that a situation b extends a situa-
tion a. The relation is reflexive, transitive and anti-symmetrical, so it is 
a partial order that is defined as follows:

a ≤ b if and only if there is some logical situation that ROab.

For R we admit the following notation as it concerns an a r i t y  of 
a relation:

8  For more philosophical interpretation see Mares 2007: 34.
9  Three-Termed Relational (Routley–Meyer) Semantics for R+, in: Anderson, Belnap 

1992.



	 The Systems of Relevance Logic	 97

R0ab if and only if a ≤ b;
R1abc if and only if Rabc;
R2abcd if and only if ∃x(Rabx & Rcdx);
R3abcde if and only if ∃x(R2abcx & Rxde) etc. 	

In the system of natural deduction the subscripts refer to situations. 
If we have the structure α{1}, we interpret it that there is some situation, 
let us say a1, in which α is true. For the structure α{1, 2} the subscript re-
fers to some arbitrary situation b such that Ra1a2b, and for α{1, 2, 3} there 
is an arbitrary situation b such that R2a1a2a3b etc. The ternary relation R 
seems to be a little complicated. According to recent work by Priest, Syl-
van and Restall (2002: 1–129), this interpetation is reminiscent of that of 
non-normal modal logics. There are two sorts of situations in a frame — 
normal ones and non-normal ones. But, contrary to modal operators, the 
truth conditions for connectives in relevance logic are the same through 
the frame. Normal points are given in the interpretation of implication 
in modal logic S5:

a x α → β if and only if for every b, if b x α, then b x β.

On the other hand, to interpret the ternary relation R for implication, 
we have non-normal points:

a x α → β if and only if for every b and c where Rabc if b x α, then c  x β (→).

 A p o s i t i v e  r e l a t i o n a l  m o d e l  is quadruple 〈K, R, O, x〉, 
where 〈K, R, O〉 is a positive relational frame and x is a relation from K 
to sentences of R+ satisfying the following a t o m i c  h e r e d i t a r y 
c o n d i t i o n:

For a propositional variable p, if a x p and a ≤ b, then b x p.
For any formulae α and β we have the following valuation clauses, in-

cluding (→) as well:

a x α ∧ β if and only if a x α and a x β 	(∧);
a x α ∨ β if and only if a x α or a x β 	 (∨).

Using the accessibility relation R Routley and Meyer established the 
semantic counterparts of axioms:

1.  R0aa;
2.  if R20abc, then Rabc;
3.  if R0ab and R0bc, then R0ac;
4.  if R2abca, then there exists such x ∈ K, that Rbcx and Raxa;
5.  if Rabc, then R2abbc;
6.  if R2abca, then there exists such x ∈ K, that Racx and Rbxa;
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7.  Ra0a;
8.  if Rabc, then Rbac.

In this way one can distinguish the positive models adding the above 
conditions:

T+ : the accessibility relation R fulfils the conditions 1–6;
E+ : the accessibility relation R fulfils the conditions 1–7; 
R+ : the accessibility relation R fulfils the conditions 1–8.

If one adds to R+ the following condition:

9.  R00a,

then obtains RM+.

5. Weak Systems of Relevance Logic

There are at least two approaches to the problem of weak systems. First 
of all, it is possible to restrict a validity of some theorems. Thus, in the 
logic S with a single binary connective → of Martin and Meyer (1982: 
869–887) we have just two axioms, that is:

(1) (β → γ) → (α → β) → (α → γ) prefixing,
(2) (α → β) → [(β → γ) → (α → γ)] suffixing,

and the rule of modus ponens. The system has no theorems of the form 
α  → α, which means that all inferences from itself are invalid. In this 
way the system S rejects the traditional fallacy of circular reasoning.

Another interesting system is the Brady’s content semantics (Brady 
2003) or the system Djd. According to E. Mares, a language of this system 
is not a formal one, but rather an “interpretational language”, that is 
a  language that is already interpreted. If we admit that x is a set of sen-
tences then c(x) is an analytic closure of the set x of sentences or the con-
tent of the sentences. For instance, the content c(x) of the sentence c 
“John is a bachelor” is the sentence “John is unmarried”.

The relation of c o n t e n t  c o n t a i n m e n t, ⊇, is the superset rela-
tion, and if x and y are the sets, then x ⊇ y if and only if y ⊆ x. In a for-
mal language, besides an implication, we have conjunction, disjunction 
and of course propositional variables and parentheses. The content of 
a disjunction c(x or y) is the i n t e r s e c t i o n  of the contents c(x) ∩ c(y) 
and the content of a conjunction c(x and y) is the content of the unions 
of the contents of each conjunct, that is c(c(x) ∪ c(y)). The above inter-
pretation seems, at first sight, wrong, but it is proper from the point of 
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view of the content semantics. Following E. Mares, let us take as an ex-
ample the disjunction “Table x is made of rimu or table x is 12 feet wide”. 
In the content of “Table x is made of rimu” is the sentence “This table is 
made of wood”, but not “Table x is more than 11 feet wide”. And vice 
versa, in the content “Table x is 12 feet wide” is the sentence “Table x is 
more than 11 feet wide”, but not the sentence “Table x is made of wood”. 
Thus, neither belongs in the content of the disjunction, but their dis-
junction belongs in the content.

In Brady’s logic we get the following weaker version of transitivity:

(3) [(α → β) ∧ (β → γ)] → (α → γ),

and the law of contraction is not valid:

(4) [(α → (α → β)] → (α → β).

(4) is deductively equivalent to the Modus Ponens theorem:

(5) α ∧ (α → β) → β.

The antecedent of (5) is a union of the contents of a sentence and 
a containment, that is c(α) ∪ c((c)α → c(β)), and the conclusion is a con-
tent of sentence c(β). (5) is the theorem (axiom) but not rule form of Mo-
dus Ponens, and there is no guarantee that the c(β) is contained in c(α), 
because (c)α → c(β) would be not true. What is more, c(α) is not neces-
sarily contained in the content of the containment sentence, (c)α → c(β). 
So, c(β) is not generally contained in c(α) ∪ (c)α → c(β).

However, this is not the only possible approach. We can investigate 
even weaker logics which have no theorems and are characterized only 
by rules of deducibility. In this way D. M. Gabbay (1976) introduced sys-
tems x0 and x1. But first, following Wójcicki (1984), let us describe how 
to define a d e d u c t i v e  s y s t e m  from the set of theorems of some 
logical system. It is possible to represent the notion of entailment → by 
the notion of deduction, that is by the metalogical connective v. Then, 
we can have the following definition of a deductive system:

The formulas α1, α2, … , αn ∈ Fm entails α ∈ Fm if and only if the for-
mula α1 ∧ α2 … ∧ αn → α is a t h e o r e m  of R, RM, E.

This determines the consequences of only nonempty and finite sets 
of formulas. Wójcicki adds the conditions that the logic must be f i n i -
t a r y  and have no theorems. The systems x0 and x1 have no theorems 
and are equal. In the extension of x1, that is x2, Bradley tries to find out 
what conditions would give → the meaning of strict implication or intu-
itionistic implication.
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The last system is x3 that corresponds to B+. In this last system we 
have the weaker form of p r e f i x i n g  and s u f f i x i n g :

(β → γ) v (α → β) → (α → γ) prefixing (rule),
(α → β) v [(β → γ) → (α → γ)] suffixing (rule).

The interesting algebraic study of a deductive system we can find in 
the paper of Font and Rodriguez (1994). They define a deductive system 
WR which corresponds to the semantic entailment associated with the 
relational models of Routley, Meyer, Fine and others. R is an axiomatic 
extension of WR. Following the idea, it is possible to define the other de-
ductive systems like WRM, WE etc., and the systems RM and E etc. are 
axiomatic extensions of them. Generally we can say:

D e f i n i t i o n  1: We call WR = 〈Fm, vWR〉, WRM = 〈Fm, vWRM〉, WE =  
= 〈Fm, vWE〉, the deductive systems defined by the condition that, for any 
Γ ∪ {α} ⊆ Fm, Γ vWR α, Γ vWRM α, Γ vWE α, if and only if there are α1, α2, 
…, αn ∈ Γ such that consequently vR α1 ∧ α2 … ∧ αn → α, vRM α1 ∧ α2 
… ∧ αn → α, vE α1 ∧ α2 … ∧ αn → α. Alternatively we can say the follow-
ing:

1. vWR, vWRM and vWE are finitary.
2. WR, WRM and WE have no theorems.
3. For every α1, α2, …, αn ∈ Fm, consequently {α1, α2, … , αn} vWR α if and only if vR 
α1 ∧ α2 … ∧ αn → α, {α1, α2, … , αn} vWRM α if and only if vRM α1 ∧ α2 … ∧ αn → α and 
{α1, α2, …, αn} vWE α if and only if vE α1 ∧ α2 … ∧ αn → α.

We can prove that the following rules:

(R1) α, α → β v β Modus Ponens,
(R2) α, β v α ∧ β Adjunction,

are also the rules of WRM, WE and WR. (R1) follows from the Slaney’s 
theorem:

[α ∧ (α → β)] → β.

(R2) follows from the axioms of R, RM and E:

(Axiom 1) α → α,
(Axiom 2) α ∧ β → α,
(Axiom 3) α ∧ β → β.

It is known that R and RM are both algebraisable, but E is not. As far 
as WRM, WE and WR are concerned, neither of them are algebraisable. 
It is obvious if we consider the algebra 2 for any deductive system with-
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out theorems. There are three filters on it, namely ∅ (empty set), because 
a deductive system has no theorems, {1} — by the completeness theorem, 
and trivially D e f i n i t i o n  2: By ΩAF (the Leibniz’s operator) we mean 
the largest congruence of any algebra A compatible with a filter F. Thus, 
the whole algebra is the congruence compatible with ∅, i.e. Ω2∅ = 2 × 2. 
Then, the identity relation I2 is the congruence compatible with {1}, i.e. 
Ω2{1} = I2, and Ω22 = 2 × 2. Thus, we have ∅ ⊆ {1} while Ω2∅ ⊄ Ω2{1}. So 
such a system is not protoalgebraic and because any algebraisable deduc-
tive system is protoalgebraic, therefore WRM, WE and WR are not alge-
braisable.

 6. Summary

It is supposed that system R the most properly captures relevant implica-
tion, and E is supposed to capture as well the notion of strict relevant im-
plication. It is possible to add a necessity operator to R. According to 
Ackermann, to say that “α entails β” means that “logical connection 
holds between α and β”. On the other hand, Parry’s system of a n a l y t -
i c  i m p l i c a t i o n  (analytische Implikation) develops Kant fs dictum 
that the ‘predicate is contained in the subject’. In this system α → β is 
provable if all variables in β also occur in α. In consequence the L ewis 
paradoxes S2 and S3 fail. But it is possible to distinguish between preval-
id and valid sequents/sets of sentences. The inference from α to β is pre-
valid if α x β (β is a semantic consequence of α), and for no proper sub-
sets of α and β we have α' x β'. The L ewis paradoxes fail because the 
proper subsets respectively there are α ∧ ¬ α / ∅ and ∅ / β ∨ ¬ β. In Par-
ry’s system collapses the notion of validity and prevalidity contrary to 
such systems as R and E, so these systems are more elegant.

There is close connection between relevant entailment and condi-
tionals because they express a connection of relevance between the ante
cedent and consequent of true conditional. A false antecedent or true 
consequent are insufficient to guarantee the truth of a conditional. It 
seems that the Routley–Meyer ternary relation would be proper to give 
a truth condition for the conditional. When we evaluate the condition-
al we need to consider circumstances in which the antecedent and the 
consequent are true. For the antecedent one considers the set of circum-
stances in which it is true. But what about the consequent? It is possible 
to consider the set of circumstances in which it fails. Out of discussion 
is the point that the antecedent helps to evaluate the conditional, but 
the problem whether the consequent helps is still open.
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